Extensions 1→N→G→Q→1 with N=C3 and Q=C32⋊C9

Direct product G=N×Q with N=C3 and Q=C32⋊C9
dρLabelID
C3×C32⋊C981C3xC3^2:C9243,32


Non-split extensions G=N.Q with N=C3 and Q=C32⋊C9
extensionφ:Q→Aut NdρLabelID
C3.1(C32⋊C9) = C3.C92central extension (φ=1)243C3.1(C3^2:C9)243,2
C3.2(C32⋊C9) = C32⋊C27central extension (φ=1)81C3.2(C3^2:C9)243,12
C3.3(C32⋊C9) = C33⋊C9central stem extension (φ=1)27C3.3(C3^2:C9)243,13
C3.4(C32⋊C9) = C32.19He3central stem extension (φ=1)81C3.4(C3^2:C9)243,14
C3.5(C32⋊C9) = C32.20He3central stem extension (φ=1)81C3.5(C3^2:C9)243,15
C3.6(C32⋊C9) = C9.4He3central stem extension (φ=1)273C3.6(C3^2:C9)243,16
C3.7(C32⋊C9) = He3⋊C9central stem extension (φ=1)81C3.7(C3^2:C9)243,17
C3.8(C32⋊C9) = 3- 1+2⋊C9central stem extension (φ=1)81C3.8(C3^2:C9)243,18
C3.9(C32⋊C9) = C9.5He3central stem extension (φ=1)813C3.9(C3^2:C9)243,19
C3.10(C32⋊C9) = C9.6He3central stem extension (φ=1)813C3.10(C3^2:C9)243,20

׿
×
𝔽